
Philo Documentation
Release 0.9.2

iThink Software

February 01, 2012

CONTENTS

i

ii

Philo Documentation, Release 0.9.2

Philo is a foundation for developing web content management systems. Please, read the notes for our latest
release.

Prerequisites:

• Python 2.5.4+

• Django 1.3+

• django-mptt e734079+

• (optional) django-grappelli 2.0+

• (optional) south 0.7.2+

• (philo.contrib.penfield) django-taggit 0.9.3+

• (philo.contrib.waldo, optional) recaptcha-django r6+

CONTENTS 1

http://www.python.org/
http://www.djangoproject.com/
https://github.com/django-mptt/django-mptt/
http://code.google.com/p/django-grappelli/
http://south.aeracode.org/
https://github.com/alex/django-taggit/
http://code.google.com/p/recaptcha-django/

Philo Documentation, Release 0.9.2

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 What is Philo, anyway?

Philo allows the creation of site structures using Django’s built-in admin interface. Like Django, Philo separates URL
structure from backend code from display:

• Nodes represent the URL hierarchy of the website.

• Views contain the logic for each Node, as simple as a Redirect or as complex as a Blog.

• Pages (the most commonly used View) render whatever context they are passed using database-driven
Templates written with Django’s template language.

• Attributes are arbitrary key/value pairs which can be attached to most of the models that Philo provides.
Attributes of a Node will be inherited by all of the Node‘s descendants and will be available in the template’s
context.

The container template tag that Philo provides makes it easy to mark areas in a template which need to be editable
page-by-page; every Page will have an additional field in the admin for each container in the template it uses.

1.1.1 How’s that different than other CMSes?

Philo developed according to principles that grew out of the observation of the limitations and practices of other
content management systems. For example, Philo believes that:

• Designers are in charge of how content is displayed, not end users. For example, users should be able to embed images in blog entries – but the display of the image, even the presence or absence of a wrapping <figure> element, should depend on the template used to render the entry, not the HTML5 knowledge of the user.

See Also:

embed

• Interpretation of content (as a django template, as markdown, as textile, etc.) is the responsibility of the template designer, not of code developers or the framework.

See Also:

include_string

• Page content should be simple – not reorderable. Each piece of content should only be related to one page. Any other system will cause more trouble than it’s worth.

See Also:

Contentlet, ContentReference

3

Philo Documentation, Release 0.9.2

• Some pieces of information may be shared by an entire site, used in disparate places, and changed frequently enough that it is far too difficult to track down every use. These pieces of information should be stored separately from the content that contains them.

See Also:

Attribute

1.2 Tutorials

1.2.1 Getting started with philo

Note: This guide assumes that you have worked with Django’s built-in administrative interface.

Once you’ve installed philo and mptt to your python path, there are only a few things that you need to do to get philo
working.

1. Add philo and mptt to settings.INSTALLED_APPS:

INSTALLED_APPS = (
...
’philo’,
’mptt’,
...

)

2. Syncdb or run migrations to set up your database.

3. Add philo.middleware.RequestNodeMiddleware to settings.MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
...
’philo.middleware.RequestNodeMiddleware’,
...

)

4. Include philo.urls somewhere in your urls.py file. For example:

from django.conf.urls.defaults import patterns, include, url
urlpatterns = patterns(’’,

url(r’^’, include(’philo.urls’)),
)

Philo should be ready to go! (Almost.)

Hello world

Now that you’ve got everything configured, it’s time to set up your first page! Easy peasy. Open up the admin and add
a new Template. Call it “Hello World Template”. The code can be something like this:

<html>
<head>

<title>Hello world!</title>
</head>
<body>

<p>Hello world!</p>
<p>The time is {% now %}.</p>

4 Chapter 1. Contents

http://philocms.org/
http://github.com/django-mptt/django-mptt

Philo Documentation, Release 0.9.2

</body>
</html>

Next, add a philo Page - let’s call it “Hello World Page” and use the template you just made.

Now make a philo Node. Give it the slug hello-world. Set the view_content_type to “Page” and the
view_object_id to the id of the page that you just made - probably 1. If you navigate to /hello-world, you
will see the results of rendering the page!

Setting the root node

So what’s at /? If you try to load it, you’ll get a 404 error. This is because there’s no Node located there - and since
Node.slug is a required field, getting a node there is not as simple as leaving the slug blank.

In philo, the node that is displayed at / is called the “root node” of the current Site. To represent this idea cleanly
in the database, philo adds a ForeignKey to Node to the django.contrib.sites.models.Site model.

Since there’s only one Node in your Site, we probably want hello-world to be the root node. All you have to
do is edit the current Site and set its root node to hello-world. Now you can see the page rendered at /!

Editing page contents

Great! We’ve got a page that says “Hello World”. But what if we want it to say something else? Should we really
have to edit the Template to change the content of the Page? And what if we want to share the Template but
have different content? Adjust the Template to look like this:

<html>
<head>

<title>{% container page_title %}</title>
</head>
<body>

{% container page_body as content %}
{% if content %}

<p>{{ content }}</p>
{% endif %}
<p>The time is {% now "jS F Y H:i" %}.</p>

</body>
</html>

Now go edit your Page. Two new fields called “Page title” and “Page body” have shown up! You can put anything
you like in here and have it show up in the appropriate places when the page is rendered.

See Also:

philo.templatetags.containers.container

Congrats! You’ve done it!

1.2.2 Using Shipherd in the Admin

The navigation mechanism is fairly complex; unfortunately, there’s no real way around that - without a lot of equally
complex code that you are quite welcome to write and contribute! ;-)

For this guide, we’ll assume that you have the setup described in Getting started with philo. We’ll be adding a main
Navigation to the root Node and making it display as part of the Template.

1.2. Tutorials 5

Philo Documentation, Release 0.9.2

Before getting started, make sure that you’ve added philo.contrib.shipherd to your
INSTALLED_APPS. shipherd template tags also require the request context processor, so make sure to set
TEMPLATE_CONTEXT_PROCESSORS appropriately:

TEMPLATE_CONTEXT_PROCESSORS = (
Defaults
"django.contrib.auth.context_processors.auth",
"django.core.context_processors.debug",
"django.core.context_processors.i18n",
"django.core.context_processors.media",
"django.core.context_processors.static",
"django.contrib.messages.context_processors.messages"
...
"django.core.context_processors.request"

)

Creating the Navigation

Start off by adding a new Navigation instance with node set to the good ole’ root node and key set to main.
The default depth of 3 is fine.

Now open up that first inline NavigationItem. Make the text Hello World and set the target Node to, again,
root. (Of course, this is a special case. If we had another node that we wanted to point to, we would choose that.)

Press save and you’ve created your first navigation.

Displaying the Navigation

All you need to do now is show the navigation in the template! This is quite easy, using the recursenavigation
templatetag. For now we’ll keep it simple. Adjust the “Hello World Template” to look like this:

<html>{% load shipherd %}
<head>

<title>{% container page_title %}</title>
</head>
<body>

{% recursenavigation node "main" %}

<li{% if navloop.active %} class="active"{% endif %}>
{{ item.text }}

{% endrecursenavigation %}

{% container page_body as content %}
{% if content %}

<p>{{ content }}</p>
{% endif %}
<p>The time is {% now %}.</p>

</body>
</html>

Now have a look at the page - your navigation is there!

6 Chapter 1. Contents

Philo Documentation, Release 0.9.2

Linking to google

Edit the main Navigation again to add another NavigationItem. This time give it the text Google and set
the url_or_subpath field to http://google.com. A navigation item will show up on the Hello World page
that points to google.com! Granted, your navigation probably shouldn’t do that, because confusing navigation is
confusing; the point is that it is possible to provide navigation to arbitrary URLs.

url_or_subpath can also be used in conjuction with a Node to link to a subpath beyond that Node‘s url.

1.3 Philo’s models

Contents:

1.3.1 Entities and Attributes

One of the core concepts in Philo is the relationship between the Entity and Attribute classes. Attributes
represent an arbitrary key/value pair by having one GenericForeignKey to an Entity and another to an
AttributeValue.

Attributes

class philo.models.base.Attribute(*args, **kwargs)
Attributes exist primarily to let arbitrary data be attached to arbitrary model instances without altering the
database schema and without guaranteeing that the data will be available on every instance of that model.

Generally, Attributes will not be accessed as models; instead, they will be accessed through the
Entity.attributes property, which allows direct dictionary getting and setting of the value of an
Attribute with its key.

entity
GenericForeignKey to anything (generally an instance of an Entity subclass).

value
GenericForeignKey to an instance of a subclass of AttributeValue as determined by the
attribute_value_limiter.

key = None
CharField containing a key (up to 255 characters) consisting of alphanumeric characters and under-
scores.

set_value(value, value_class=<class ‘philo.models.base.JSONValue’>)
Given a value and a value class, sets up self.value appropriately.

class philo.models.base.AttributeValue(*args, **kwargs)
This is an abstract base class for models that can be used as values for Attributes.

AttributeValue subclasses are expected to supply access to a clean version of their value through an attribute
called “value”.

set_value(value)
Given a value, sets the appropriate fields so that it can be correctly stored in the database.

value_formfields(**kwargs)
Returns any formfields that would be used to construct an instance of this value.

Returns A dictionary mapping field names to formfields.

1.3. Philo’s models 7

Philo Documentation, Release 0.9.2

construct_instance(**kwargs)
Applies cleaned data from the formfields generated by valid_formfields to oneself.

philo.models.base.attribute_value_limiter = <philo.utils.ContentTypeSubclassLimiter object at 0x2abea10>
An instance of ContentTypeSubclassLimiter which is used to track the content types which are con-
sidered valid value models for an Attribute.

class philo.models.base.JSONValue(*args, **kwargs)
Bases: philo.models.base.AttributeValue

Stores a python object as a json string.

class philo.models.base.ForeignKeyValue(*args, **kwargs)
Bases: philo.models.base.AttributeValue

Stores a generic relationship to an instance of any value content type (as defined by the
value_content_type_limiter).

class philo.models.base.ManyToManyValue(*args, **kwargs)
Bases: philo.models.base.AttributeValue

Stores a generic relationship to many instances of any value content type (as defined by the
value_content_type_limiter).

philo.models.base.value_content_type_limiter = <philo.utils.ContentTypeRegistryLimiter object at 0x2ab15d0>
An instance of ContentTypeRegistryLimiter which is used to track the content types which can be
related to by ForeignKeyValues and ManyToManyValues.

philo.models.base.register_value_model(model)
Registers a model as a valid content type for a ForeignKeyValue or ManyToManyValue through the
value_content_type_limiter.

philo.models.base.unregister_value_model(model)
Registers a model as a valid content type for a ForeignKeyValue or ManyToManyValue through the
value_content_type_limiter.

Entities

class philo.models.base.Entity(*args, **kwargs)
An abstract class that simplifies access to related attributes. Most models provided by Philo subclass Entity.

class philo.models.base.TreeEntityManager

get_with_path(path, root=None, absolute_result=True, pathsep=’/’, field=’pk’)
If absolute_result is True, returns the object at path (starting at root) or raises an
ObjectDoesNotExist exception. Otherwise, returns a tuple containing the deepest object found along
path (or root if no deeper object is found) and the remainder of the path after that object as a string (or
None if there is no remaining path).

Note: If you are looking for something with an exact path, it is faster to use absolute_result=True, unless
the path depth is over ~40, in which case the high cost of the absolute query may make a binary search
(i.e. non-absolute) faster.

Note: SQLite allows max of 64 tables in one join. That means the binary search will only work on paths
with a max depth of 127 and the absolute fetch will only work to a max depth of (surprise!) 63. Larger
depths could be handled, but since the common use case will not have a tree structure that deep, they are
not.

8 Chapter 1. Contents

Philo Documentation, Release 0.9.2

Parameters

• path – The path of the object

• root – The object which will be considered the root of the search

• absolute_result – Whether to return an absolute result or do a binary search

• pathsep – The path separator used in path

• field – The field on the model which should be queried for path segment matching.

Returns An instance if absolute_result is True or an (instance, remaining_path) tuple
otherwise.

Raises django.core.exceptions.ObjectDoesNotExist if no object can be found matching the
input parameters.

class philo.models.base.TreeEntity(*args, **kwargs)
Bases: philo.models.base.Entity, mptt.models.MPTTModel

An abstract subclass of Entity which represents a tree relationship.

objects
An instance of TreeEntityManager.

get_path(root=None, pathsep=’/’, field=’pk’, memoize=True)

Parameters

• root – Only return the path since this object.

• pathsep – The path separator to use when constructing an instance’s path

• field – The field to pull path information from for each ancestor.

• memoize – Whether to use memoized results. Since, in most cases, the ancestors of a
TreeEntity will not change over the course of an instance’s lifetime, this defaults to True.

Returns A string representation of an object’s path.

get_path(root=None, pathsep=’/’, field=’pk’, memoize=True)

Parameters

• root – Only return the path since this object.

• pathsep – The path separator to use when constructing an instance’s path

• field – The field to pull path information from for each ancestor.

• memoize – Whether to use memoized results. Since, in most cases, the ancestors of a
TreeEntity will not change over the course of an instance’s lifetime, this defaults to True.

Returns A string representation of an object’s path.

path

Parameters

• root – Only return the path since this object.

• pathsep – The path separator to use when constructing an instance’s path

• field – The field to pull path information from for each ancestor.

1.3. Philo’s models 9

Philo Documentation, Release 0.9.2

• memoize – Whether to use memoized results. Since, in most cases, the ancestors of a
TreeEntity will not change over the course of an instance’s lifetime, this defaults to True.

Returns A string representation of an object’s path.

1.3.2 Nodes and Views: Building Website structure

Nodes

class philo.models.nodes.Node(*args, **kwargs)
Bases: philo.models.base.SlugTreeEntity

Nodes are the basic building blocks of a website using Philo. They define the URL hierarchy and connect each
URL to a View subclass instance which is used to generate an HttpResponse.

view
GenericForeignKey to a non-abstract subclass of View

accepts_subpath
A property shortcut for self.view.accepts_subpath

render_to_response(request, extra_context=None)
This is a shortcut method for View.render_to_response()

get_absolute_url(*moreargs, **morekwargs)
This is essentially a shortcut for calling construct_url() without a subpath.

Returns The absolute url of the node on the current site.

construct_url(subpath=’/’, request=None, with_domain=False, secure=False)
This method will do its best to construct a URL based on the Node’s location. If with_domain is True, that
URL will include a domain and a protocol; if secure is True as well, the protocol will be https. The request
will be used to construct a domain in cases where a call to Site.objects.get_current() fails.

Node urls will not contain a trailing slash unless a subpath is provided which ends
with a trailing slash. Subpaths are expected to begin with a slash, as if returned by
django.core.urlresolvers.reverse().

Because this method will be called frequently and will always try to reverse philo-root, the results of
that reversal will be cached by default. This can be disabled by setting PHILO_CACHE_PHILO_ROOT
to False.

construct_url() may raise the following exceptions:

•NoReverseMatch if “philo-root” is not reversable – for example, if philo.urls is not included
anywhere in your urlpatterns.

•Site.DoesNotExist if with_domain is True but no Site or RequestSite can be built.

•AncestorDoesNotExist if the root node of the site isn’t an ancestor of the node constructing the
URL.

Parameters

• subpath (string) – The subpath to be constructed beyond beyond the node’s URL.

• request – HttpRequest instance. Will be used to construct a RequestSite if
Site.objects.get_current() fails.

• with_domain – Whether the constructed URL should include a domain name and proto-
col.

10 Chapter 1. Contents

Philo Documentation, Release 0.9.2

• secure – Whether the protocol, if included, should be http:// or https://.

Returns A constructed url for accessing the given subpath of the current node instance.

Views

Abstract View Models

class philo.models.nodes.View(*args, **kwargs)
Bases: philo.models.base.Entity

View is an abstract model that represents an item which can be “rendered”, generally in response to an
HttpRequest.

accepts_subpath = False
An attribute on the class which defines whether this View can handle subpaths. Default: False

classmethod handles_subpath(subpath)
Returns True if the View handles the given subpath, and False otherwise.

reverse(view_name=None, args=None, kwargs=None, node=None, obj=None)
If accepts_subpath is True, try to reverse a URL using the given parameters using self as the
urlconf.

If obj is provided, get_reverse_params() will be called and the results will be combined with any
view_name, args, and kwargs that may have been passed in.

Parameters

• view_name – The name of the view to be reversed.

• args – Extra args for reversing the view.

• kwargs – A dictionary of arguments for reversing the view.

• node – The node whose subpath this is.

• obj – An object to be passed to get_reverse_params() to generate a view_name,
args, and kwargs for reversal.

Returns A subpath beyond the node that reverses the view, or an absolute url that reverses the
view if a node was passed in.

Raises

• philo.exceptions.ViewDoesNotProvideSubpaths – if accepts_subpath is False

• philo.exceptions.ViewCanNotProvideSubpath – if a reversal is not possible.

get_reverse_params(obj)
This method is not implemented on the base class. It should return a (view_name, args, kwargs)
tuple suitable for reversing a url for the given obj using self as the urlconf. If a reversal will not be
possible, this method should raise ViewCanNotProvideSubpath.

attributes_with_node(node, mapper=<class ‘philo.utils.entities.LazyPassthroughAttributeMapper’>)
Returns a LazyPassthroughAttributeMapper which can be used to directly retrieve the values
of Attributes related to the View, falling back on the Attributes of the passed-in Node and its
ancestors.

render_to_response(request, extra_context=None)
Renders the View as an HttpResponse. This will raise MIDDLEWARE_NOT_CONFIGURED if the

1.3. Philo’s models 11

http://
https://

Philo Documentation, Release 0.9.2

request doesn’t have an attached Node. This can happen if the RequestNodeMiddleware is not in
settings.MIDDLEWARE_CLASSES or if it is not functioning correctly.

render_to_response() will send the view_about_to_render signal, then call
actually_render_to_response(), and finally send the view_finished_rendering
signal before returning the response.

actually_render_to_response(request, extra_context=None)
Concrete subclasses must override this method to provide the business logic for turning a request and
extra_context into an HttpResponse.

class philo.models.nodes.MultiView(*args, **kwargs)
Bases: philo.models.nodes.View

MultiView is an abstract model which represents a section of related pages - for example, a BlogViewmight
have a foreign key to Pages for an index, an entry detail, an entry archive by day, and so on. MultiView
subclasses View, and defines the following additional methods and attributes:

accepts_subpath = True
Same as View.accepts_subpath. Default: True

urlpatterns
Returns urlpatterns that point to views (generally methods on the class). MultiViews can be thought of
as “managing” these subpaths.

actually_render_to_response(request, extra_context=None)
Resolves the remaining subpath left after finding this View‘s node using self.urlpatterns and
renders the view function (or method) found with the appropriate args and kwargs.

get_context()
Hook for providing instance-specific context - such as the value of a Field - to any view methods on the
instance.

basic_view(field_name)
Given the name of a field on the class, accesses the value of that field and treats it as a View instance.
Creates a basic context based on self.get_context() and any extra_context that was passed in, then calls the
View instance’s render_to_response() method. This method is meant to be called to return a view function
appropriate for urlpatterns.

Parameters field_name – The name of a field on the instance which contains a View subclass
instance.

Returns A simple view function.

Example:

class Foo(Multiview):
page = models.ForeignKey(Page)

@property
def urlpatterns(self):

urlpatterns = patterns(’’,
url(r’^$’, self.basic_view(’page’))

)
return urlpatterns

Concrete View Subclasses

class philo.models.nodes.Redirect(*args, **kwargs)
Bases: philo.models.nodes.TargetURLModel, philo.models.nodes.View

12 Chapter 1. Contents

Philo Documentation, Release 0.9.2

Represents a 301 or 302 redirect to a different url on an absolute or relative path.

STATUS_CODES = ((302, ‘Temporary’), (301, ‘Permanent’))
A choices tuple of redirect status codes (temporary or permanent).

status_code = None
An IntegerField which uses STATUS_CODES as its choices. Determines whether the redirect is
considered temporary or permanent.

actually_render_to_response(request, extra_context=None)
Returns an HttpResponseRedirect to self.target_url.

class philo.models.nodes.File(*args, **kwargs)
Bases: philo.models.nodes.View

Stores an arbitrary file.

name = None
The name of the uploaded file. This is meant for finding the file again later, not for display.

mimetype = None
Defines the mimetype of the uploaded file. This will not be validated. If no mimetype is provided, it will
be automatically generated based on the filename.

file = 5
Contains the uploaded file. Files are uploaded to philo/files/%Y/%m/%d.

Pages Pages are the most frequently used View subclass. They define a basic HTML page and its associated
content. Each Page renders itself according to a Template. The Template may contain container tags, which
define related Contentlets and ContentReferences for any page using that Template.

class philo.models.pages.Page(*args, **kwargs)
Bases: philo.models.nodes.View

Represents a page - something which is rendered according to a Template. The page will have a number of
related Contentlets and ContentReferences depending on the template selected - but these will appear
only after the page has been saved with that template.

template
A ForeignKey to the Template used to render this Page.

title = None
The name of this page. Chances are this will be used for organization - i.e. finding the page in a list of
pages - rather than for display.

get_containers()
Returns the results containers for the related template. This is a tuple containing the specs of all
containers in the Template‘s code. The value will be cached on the instance so that multiple accesses
will be less expensive.

containers
Returns the results containers for the related template. This is a tuple containing the specs of all
containers in the Template‘s code. The value will be cached on the instance so that multiple accesses
will be less expensive.

render_to_string(request=None, extra_context=None)
In addition to rendering as an HttpResponse, a Page can also render as a string. This means, for ex-
ample, that Pages can be used to render emails or other non-HTML content with the same container-
based functionality as is used for HTML.

1.3. Philo’s models 13

Philo Documentation, Release 0.9.2

The Page will add itself to the context as page and its attributes as attributes. If a request is
provided, then request.node will also be added to the context as node and attributes will be set
to the result of calling attributes_with_node() with that Node.

actually_render_to_response(request, extra_context=None)
Returns an HttpResponse with the content of the render_to_string() method and the mimetype
set to the mimetype of the related Template.

clean_fields(exclude=None)
This is an override of the default model clean_fields method. Essentially, in addition to validating the
fields, this method validates the Template instance that is used to render this Page. This is useful for
catching template errors before they show up as 500 errors on a live site.

class philo.models.pages.Template(*args, **kwargs)
Bases: philo.models.base.SlugTreeEntity

Represents a database-driven django template.

See Also:

philo.loaders.database

name = None
The name of the template. Used for organization and debugging.

documentation = None
Can be used to let users know what the template is meant to be used for.

mimetype = None
Defines the mimetype of the template. This is not validated. Default: text/html.

code = None
An insecure TemplateField containing the django template code for this template.

get_containers()
Returns a tuple where the first item is a list of names of contentlets referenced by containers, and the
second item is a list of tuples of names and contenttypes of contentreferences referenced by containers.
This will break if there is a recursive extends or includes in the template code. Due to the use of an empty
Context, any extends or include tags with dynamic arguments probably won’t work.

containers
Returns a tuple where the first item is a list of names of contentlets referenced by containers, and the
second item is a list of tuples of names and contenttypes of contentreferences referenced by containers.
This will break if there is a recursive extends or includes in the template code. Due to the use of an empty
Context, any extends or include tags with dynamic arguments probably won’t work.

class philo.models.pages.Contentlet(*args, **kwargs)
Represents a piece of content on a page. This content is treated as a secure TemplateField.

page
The page which this Contentlet is related to.

name = None
This represents the name of the container as defined by a container tag.

content = None
A secure TemplateField holding the content for this Contentlet. Note that actually using this field
as a template requires use of the include_string template tag.

class philo.models.pages.ContentReference(*args, **kwargs)
Represents a model instance related to a page.

14 Chapter 1. Contents

Philo Documentation, Release 0.9.2

page
The page which this ContentReference is related to.

name = None
This represents the name of the container as defined by a container tag.

content
A GenericForeignKey to a model instance. The content type of this instance is defined by the
container tag which defines this ContentReference.

1.3.3 Collections

class philo.models.collections.Collection(*args, **kwargs)
Collections are curated ordered groupings of arbitrary models.

name = None
CharField with max_length 255

description = None
Optional TextField

get_count()
Returns the number of items in the collection.

class philo.models.collections.CollectionMember(*args, **kwargs)
The collection member model represents a generic link from a Collection to an arbitrary model instance
with an attached order.

objects = <philo.models.collections.CollectionMemberManager object at 0x2ace8d0>
A CollectionMemberManager instance

collection
ForeignKey to a Collection instance.

index = None
The numerical index of the item within the collection (optional).

member
GenericForeignKey to an arbitrary model instance.

class philo.models.collections.CollectionMemberManager

with_model(model)
Given a model class or instance, returns a queryset of all instances of that model which have collection
members in this manager’s scope.

Example:

>>> from philo.models import Collection
>>> from django.contrib.auth.models import User
>>> collection = Collection.objects.get(name="Foo")
>>> collection.members.all()
[<CollectionMember: Foo - user1>, <CollectionMember: Foo - user2>, <CollectionMember: Foo - Spam & Eggs>]
>>> collection.members.with_model(User)
[<User: user1>, <User: user2>]

1.3. Philo’s models 15

Philo Documentation, Release 0.9.2

1.3.4 Miscellaneous Models

class philo.models.nodes.TargetURLModel(*args, **kwargs)
An abstract parent class for models which deal in targeting a url.

target_node
An optional ForeignKey to a Node. If provided, that node will be used as the basis for the redirect.

url_or_subpath = None
A CharField which may contain an absolute or relative URL, or the name of a node’s subpath.

reversing_parameters = 5
A JSONField instance. If the value of reversing_parameters is not None, the
url_or_subpath will be treated as the name of a view to be reversed. The value of
reversing_parameters will be passed into the reversal as args if it is a list or as kwargs if it is
a dictionary. Otherwise it will be ignored.

target_url
Calculates and returns the target url based on the target_node, url_or_subpath, and
reversing_parameters. The results will be memoized by default; this can be prevented by passing
in memoize=False.

1.3.5 Custom Fields

class philo.models.fields.JSONField
A TextField which stores its value on the model instance as a python object and stores its value in the
database as JSON. Validated with json_validator().

class philo.models.fields.SlugMultipleChoiceField
Stores a selection of multiple items with unique slugs in the form of a comma-separated list. Also knows how
to correctly handle RegistryIterators passed in as choices.

class philo.models.fields.TemplateField(allow=None, disallow=None, secure=True, *args,
**kwargs)

A TextField which is validated with a TemplateValidator. allow, disallow, and secure will be
passed into the validator’s construction.

AttributeProxyFields

class philo.models.fields.entities.AttributeProxyField(attribute_key=None,
verbose_name=None,
help_text=None, de-
fault=NOT_PROVIDED,
editable=True, choices=None,
*args, **kwargs)

AttributeProxyFields can be assigned as fields on a subclass of philo.models.base.Entity.
They act like any other model fields, but instead of saving their data to the model’s table, they save it to
Attributes related to a model instance. Additionally, a new Attribute will be created for an instance
if and only if the field’s value has been set. This is relevant i.e. for PassthroughAttributeMappers and
TreeAttributeMappers, where even an Attribute with a value of None will prevent a passthrough.

Example:

class Thing(Entity):
numbers = models.PositiveIntegerField()
improvised = JSONAttribute(models.BooleanField)

16 Chapter 1. Contents

Philo Documentation, Release 0.9.2

Parameters attribute_key – The key of the attribute that will be used to store this field’s value, if it
is different than the field’s name.

The remaining parameters have the same meaning as for ordinary model fields.

formfield(form_class=<class ‘django.forms.fields.CharField’>, **kwargs)
Returns a form field capable of accepting values for the AttributeProxyField.

value_from_object(obj)
Returns the value of this field in the given model instance.

get_storage_value(value)
Final conversion of value before it gets stored on an Entity instance. This will be called during
EntityForm.save().

validate_value(value)
Raise an appropriate exception if value is not valid for this AttributeProxyField.

has_default()
Returns True if a default value was provided and False otherwise.

choices
Returns the choices passed into the constructor.

value_class
Each AttributeProxyField subclass can define a value_class to use for creation of new
AttributeValues

class philo.models.fields.entities.JSONAttribute(field_template=None, **kwargs)
Handles an Attribute with a JSONValue.

Parameters field_template – A django form field instance that will be used to guide rendering and
interpret values. For example, using django.forms.BooleanField will make this field
render as a checkbox.

value_class
alias of JSONValue

value_from_object(obj)
If the field template is a DateField or a DateTimeField, this will convert the default return value to
a datetime instance.

get_storage_value(value)
If value is a datetime.datetime instance, this will convert it to a format which can be stored as
correct JSON.

class philo.models.fields.entities.ForeignKeyAttribute(model, limit_choices_to=None,
**kwargs)

Handles an Attribute with a ForeignKeyValue.

Parameters limit_choices_to – A Q object, dictionary, or ContentTypeLimiter to restrict the
queryset for the ForeignKeyAttribute.

value_class
alias of ForeignKeyValue

value_from_object(obj)
Converts the default value type (a model instance) to a pk.

class philo.models.fields.entities.ManyToManyAttribute(model, limit_choices_to=None,
**kwargs)

Handles an Attribute with a ManyToManyValue.

1.3. Philo’s models 17

Philo Documentation, Release 0.9.2

Parameters limit_choices_to – A Q object, dictionary, or ContentTypeLimiter to restrict the
queryset for the ManyToManyAttribute.

value_class
alias of ManyToManyValue

value_from_object(obj)
Converts the default value type (a queryset) to a list of pks.

1.4 Exceptions

philo.exceptions.MIDDLEWARE_NOT_CONFIGURED = ImproperlyConfigured(“Philo requires the RequestNode middleware to be installed. Edit your MIDDLEWARE_CLASSES setting to insert ‘philo.middleware.RequestNodeMiddleware’.”,)
Raised if request.node is required but not present. For example, this can be raised
by philo.views.node_view(). MIDDLEWARE_NOT_CONFIGURED is an instance of
django.core.exceptions.ImproperlyConfigured.

exception philo.exceptions.ViewDoesNotProvideSubpaths
Raised by View.reverse() when the View does not provide subpaths (the default).

exception philo.exceptions.ViewCanNotProvideSubpath
Raised by View.reverse() when the View can not provide a subpath for the supplied arguments.

exception philo.exceptions.AncestorDoesNotExist
Raised by TreeEntity.get_path() if the root instance is not an ancestor of the current instance.

1.5 Handling Requests

philo.middleware.get_node(path)
Returns a Node instance at path (relative to the current site) or None.

class philo.middleware.RequestNodeMiddleware
Adds a node attribute, representing the currently-viewed Node, to every incoming HttpRequest object.
This is required by philo.views.node_view().

RequestNodeMiddleware also catches all exceptions raised while handling requests that have at-
tached Nodes if settings.DEBUG is True. If a django.http.Http404 error was caught,
RequestNodeMiddleware will look for an “Http404” Attribute on the request’s Node; otherwise it
will look for an “Http500” Attribute. If an appropriate Attribute is found, and the value of the attribute
is a View instance, then the View will be rendered with the exception in the extra_context, bypassing
any later handling of exceptions.

philo.views.node_view(request[, path=None, **kwargs])
node_view() handles incoming requests by checking to make sure that:

•the request has an attached Node.

•the attached Node handles any remaining path beyond its location.

If these conditions are not met, then node_view() will either raise Http404 or, if it seems like the ad-
dress was mistyped (for example missing a trailing slash), return an HttpResponseRedirect to the correct
address.

Otherwise, node_view() will call the Node‘s render_to_response() method, passing kwargs in as
the extra_context.

18 Chapter 1. Contents

Philo Documentation, Release 0.9.2

1.6 Signals

philo.signals.entity_class_prepared = <django.dispatch.dispatcher.Signal object at 0x2ab1490>
Sent whenever an Entity subclass has been “prepared” – that is, after the processing nec-
essary to make AttributeProxyFields work has been completed. This will fire after
django.db.models.signals.class_prepared.

Arguments that are sent with this signal:

sender The model class.

philo.signals.view_about_to_render = <django.dispatch.dispatcher.Signal object at 0x2ab14d0>
Sent when a View instance is about to render. This allows you, for example, to modify the extra_context
dictionary used in rendering.

Arguments that are sent with this signal:

sender The View instance

request The HttpRequest instance which the View is rendering in response to.

extra_context A dictionary which will be passed into actually_render_to_response().

philo.signals.view_finished_rendering = <django.dispatch.dispatcher.Signal object at 0x2ab1510>
Sent when a view instance has finished rendering.

Arguments that are sent with this signal:

sender The View instance

response The HttpResponse instance which View view has rendered to.

philo.signals.page_about_to_render_to_string = <django.dispatch.dispatcher.Signal object at 0x2ab1550>
Sent when a Page instance is about to render as a string. If the Page is rendering as a response, this signal
is sent after view_about_to_render and serves a similar function. However, there are situations where a
Page may be rendered as a string without being rendered as a response afterwards.

Arguments that are sent with this signal:

sender The Page instance

request The HttpRequest instance which the Page is rendering in response to (if any).

extra_context A dictionary which will be passed into the Template context.

philo.signals.page_finished_rendering_to_string = <django.dispatch.dispatcher.Signal object at 0x2ab1590>
Sent when a Page instance has just finished rendering as a string. If the Page is rendering as a response,
this signal is sent before view_finished_rendering and serves a similar function. However, there are
situations where a Page may be rendered as a string without being rendered as a response afterwards.

Arguments that are sent with this signal:

sender The Page instance

string The string which the Page has rendered to.

1.7 Validators

philo.validators.INSECURE_TAGS = (‘load’, ‘extends’, ‘include’, ‘debug’)
Tags which are considered insecure and are therefore always disallowed by secure TemplateValidator
instances.

1.6. Signals 19

Philo Documentation, Release 0.9.2

philo.validators.json_validator(value)
Validates whether value is a valid json string.

class philo.validators.TemplateValidator(allow=None, disallow=None, secure=True)
Validates whether a string represents valid Django template code.

Parameters

• allow – None or an iterable of tag names which are explicitly allowed. If provided, tags
whose names are not in the iterable will cause a ValidationError to be raised if they are used
in the template code.

• disallow – None or an iterable of tag names which are explicitly allowed. If provided, tags
whose names are in the iterable will cause a ValidationError to be raised if they are used in
the template code. If a tag’s name is in allow and disallow, it will be disallowed.

• secure – If the validator is set to secure, it will automatically disallow the tag names listed
in INSECURE_TAGS. Defaults to True.

1.8 Utilities

philo.utils.fattr(*args, **kwargs)
Returns a wrapper which takes a function as its only argument and sets the key/value pairs passed in with kwargs
as attributes on that function. This can be used as a decorator.

Example:

>>> from philo.utils import fattr
>>> @fattr(short_description="Hello World!")
... def x():
... pass
...
>>> x.short_description
’Hello World!’

class philo.utils.ContentTypeRegistryLimiter
Can be used to limit the choices for a ForeignKey or ManyToManyField to the ContentTypes which
have been registered with this limiter.

register_class(cls)
Registers a model class with this limiter.

unregister_class(cls)
Unregisters a model class from this limiter.

class philo.utils.ContentTypeSubclassLimiter(cls, inclusive=False)
Can be used to limit the choices for a ForeignKey or ManyToManyField to the ContentTypes for all
non-abstract models which subclass the class passed in on instantiation.

Parameters

• cls – The class whose non-abstract subclasses will be valid choices.

• inclusive – Whether cls should also be considered a valid choice (if it is a non-abstract
subclass of models.Model)

philo.utils.paginate(objects, per_page=None, page_number=1)
Given a list of objects, return a (paginator, page, objects) tuple.

Parameters

20 Chapter 1. Contents

Philo Documentation, Release 0.9.2

• objects – The list of objects to be paginated.

• per_page – The number of objects per page.

• page_number – The number of the current page.

Returns tuple (paginator, page, objects) where paginator is a
django.core.paginator.Paginator instance, page is the result of calling
Paginator.page() with page_number, and objects is page.objects. Any of
the return values which can’t be calculated will be returned as None.

1.8.1 AttributeMappers

class philo.utils.entities.AttributeMapper(entity)
Given an Entity subclass instance, this class allows dictionary-style access to the Entity‘s Attributes.
In order to prevent unnecessary queries, the AttributeMapper will cache all Attributes and the associ-
ated python values when it is first accessed.

Parameters entity – The Entity subclass instance whose Attributes will be made accessible.

get_attributes()
Returns an iterable of all of the Entity‘s Attributes.

get_attribute(key, default=None)
Returns the Attribute instance with the given key from the cache, populating the cache if necessary,
or default if no such attribute is found.

keys()
Returns the keys from the cache, first populating the cache if necessary.

items()
Returns the items from the cache, first populating the cache if necessary.

values()
Returns the values from the cache, first populating the cache if necessary.

clear_cache()
Clears the cache.

class philo.utils.entities.TreeAttributeMapper(entity)
Bases: philo.utils.entities.AttributeMapper

The TreeEntity class allows the inheritance of Attributes down the tree. This mapper will return the
most recently declared Attribute among the TreeEntity‘s ancestors or set an attribute on the Entity it
is attached to.

get_attributes()
Returns a list of Attributes sorted by increasing parent level. When used to populate the cache, this
will cause Attributes on the root to be overwritten by those on its children, etc.

class philo.utils.entities.PassthroughAttributeMapper(entities)
Bases: philo.utils.entities.AttributeMapper

Given an iterable of Entities, this mapper will fetch an AttributeMapper for each one. Lookups will
return the value from the first AttributeMapper which has an entry for a given key. Assignments will be
made to the first Entity in the iterable.

Parameters entities – An iterable of Entity subclass instances.

1.8. Utilities 21

Philo Documentation, Release 0.9.2

LazyAttributeMappers

class philo.utils.entities.LazyAttributeMapperMixin
In some cases, it may be that only one attribute value needs to be fetched. In this case, it is more ef-
ficient to avoid populating the cache whenever possible. This mixin overrides the __getitem__() and
get_attribute() methods to prevent their populating the cache. If the cache has been populated (i.e.
through keys(), values(), etc.), then the value or attribute will simply be returned from the cache.

class philo.utils.entities.LazyAttributeMapper(entity)
Bases: philo.utils.entities.LazyAttributeMapperMixin,
philo.utils.entities.AttributeMapper

class philo.utils.entities.LazyTreeAttributeMapper(entity)
Bases: philo.utils.entities.LazyAttributeMapperMixin,
philo.utils.entities.TreeAttributeMapper

class philo.utils.entities.LazyPassthroughAttributeMapper(entities)
Bases: philo.utils.entities.LazyAttributeMapperMixin,
philo.utils.entities.PassthroughAttributeMapper

The LazyPassthroughAttributeMapper is lazy in that it tries to avoid accessing the
AttributeMappers that it uses for lookups. However, those AttributeMappers may or may not
be lazy themselves.

1.9 Template Tags

1.9.1 Collections

The collection template tags are automatically included as builtins if philo is an installed app.

templatetag collections.membersof
Given a collection and a content type, sets the results of collection.members.with_model as a variable
in the context.

Usage:

{% membersof <collection> with <app_label>.<model_name> as <var> %}

1.9.2 Containers

The container template tags are automatically included as builtins if philo is an installed app.

templatetag containers.container
If a template using this tag is used to render a Page, that Page will have associated content which can be set
in the admin interface. If a content type is referenced, then a ContentReference object will be created;
otherwise, a Contentlet object will be created.

Usage:

{% container <name> [[references <app_label>.<model_name>] as <variable>] %}

1.9.3 Embedding

The embed template tags are automatically included as builtins if philo is an installed app.

22 Chapter 1. Contents

Philo Documentation, Release 0.9.2

templatetag embed.embed
The {% embed %} tag can be used in two ways.

First, to set which template will be used to render a particular model. This declaration can be placed in a base
template and will propagate into all templates that extend that template.

Syntax:

{% embed <app_label>.<model_name> with <template> %}

Second, to embed a specific model instance in the document with a template specified earlier in the template or
in a parent template using the first syntax. The instance can be specified as a content type and pk or as a context
variable. Any kwargs provided will be passed into the context of the template.

Syntax:

{% embed (<app_label>.<model_name> <object_pk> || <instance>) [<argname>=<value> ...] %}

1.9.4 Nodes

The node template tags are automatically included as builtins if philo is an installed app.

templatetag nodes.node_url
The node_url tag allows access to View.reverse() from a template for a Node. By default, the Node
that is used for the call is pulled from the context variable node; however, this can be overridden with the [for
<node>] option.

Usage:

{% node_url [for <node>] [as <var>] %}
{% node_url with <obj> [for <node>] [as <var>] %}
{% node_url <view_name> [<arg1> [<arg2> ...]] [for <node>] [as <var>] %}
{% node_url <view_name> [<key1>=<value1> [<key2>=<value2> ...]] [for <node>] [as <var>] %}

1.9.5 String inclusion

templatetag include_string.include_string
Include a flat string by interpreting it as a template. The compiled template will be rendered with the current
context.

Usage:

{% include_string <template_code> %}

1.10 Forms

class philo.forms.entities.EntityForm(*args, **kwargs)
EntityForm knows how to handle Entity instances - specifically, how to set initial values for
AttributeProxyFields and save cleaned values to an instance on save.

1.10. Forms 23

Philo Documentation, Release 0.9.2

1.10.1 Fields

class philo.forms.fields.JSONFormField(required=True, widget=None, label=None, ini-
tial=None, help_text=None, error_messages=None,
show_hidden_initial=False, validators=[], local-
ize=False)

A form field which is validated by philo.validators.json_validator().

1.11 Database Template Loader

class philo.loaders.database.Loader(*args, **kwargs)
philo.loaders.database.Loader enables loading of template code from Templates. This would let
Templates be used with {% include %} and {% extends %} tags, as well as any other features that
use template loading.

1.12 Contrib apps

1.12.1 Penfield

Blogs

Newsletters

Template filters

Penfield supplies two template filters to handle common use cases for blogs and newsletters.

templatefilter penfield.monthname(value)
Returns the name of a month with the supplied numeric value.

templatefilter penfield.apmonthname(value)
Returns the Associated Press abbreviated month name for the supplied numeric value.

1.12.2 Shipherd

Nodes are useful for structuring a website; however, they are inherently unsuitable for creating site navigation.

The most glaring problem is that a navigation tree based on Nodes would have one Node as the root, whereas
navigation usually has multiple objects at the top level.

Additionally, navigation needs to have display text that is relevant to the current context; however, Nodes do not have
a field for that, and View subclasses with a name or title field will generally need to use it for database-searchable
names.

Finally, Node structures are inherently unordered, while navigation is inherently ordered.

shipherd exists to resolve these issues by separating navigation structures from Node structures. It is instead
structured around the way that site navigation works in the wild:

• A site may have one or more independent navigation bars (Main navigation, side navigation, etc.)

• A navigation bar may be shared by sections of the website, or even by the entire site.

• A navigation bar has a certain depth that it displays to.

24 Chapter 1. Contents

Philo Documentation, Release 0.9.2

The Navigation model supplies these features by attaching itself to a Node via ForeignKey and adding a
navigation property to Node which provides access to a Node instance’s inherited Navigations.

Each entry in the navigation bar is then represented by a NavigationItem, which stores information such as
the order and text for the entry. Given an HttpRequest, a NavigationItem can also tell whether it
is_active() or has_active_descendants().

Since the common pattern is to recurse through a navigation tree and render each part similarly, shipherd also ships
with the recursenavigation template tag.

Models

class philo.contrib.shipherd.models.NavigationMapper(node)
Bases: object, UserDict.DictMixin

The NavigationMapper is a dictionary-like object which allows easy fetching of the root items of a naviga-
tion for a node according to a key. A NavigationMapper instance will be available on each node instance
as Node.navigation if shipherd is in the INSTALLED_APPS

class philo.contrib.shipherd.models.Navigation(*args, **kwargs)
Bases: philo.models.base.Entity

Navigation represents a group of NavigationItems that have an intrinsic relationship in terms of navi-
gating a website. For example, a main navigation versus a side navigation, or a authenticated navigation
versus an anonymous navigation.

A Navigation‘s NavigationItems will be accessible from its related Node and that Node‘s descendants
through a NavigationMapper instance at Node.navigation. Example:

>>> node.navigation_set.all()
[]
>>> parent = node.parent
>>> items = parent.navigation_set.get(key=’main’).roots.all()
>>> parent.navigation["main"] == node.navigation["main"] == list(items)
True

objects = <philo.contrib.shipherd.models.NavigationManager object at 0x23a5610>
A NavigationManager instance.

node
The Node which the Navigation is attached to. The Navigation will also be available to all the
Node‘s descendants and will override any Navigation with the same key on any of the Node‘s ances-
tors.

key = None
Each Navigation has a key which consists of one or more word characters so that it can easily be
accessed in a template as {{ node.navigation.this_key }}.

depth = None
There is no limit to the depth of a tree of NavigationItems, but depth will limit how much of the
tree will be displayed.

class philo.contrib.shipherd.models.NavigationItem(*args, **kwargs)
Bases: philo.models.base.TreeEntity, philo.models.nodes.TargetURLModel

NavigationItem(id, parent_id, lft, rght, tree_id, level, target_node_id, url_or_subpath, revers-
ing_parameters_json, navigation_id, text, order)

1.12. Contrib apps 25

Philo Documentation, Release 0.9.2

navigation
A ForeignKey to a Navigation instance. If this is not null, then the NavigationItem will be a
root node of the Navigation instance.

text = None
The text which will be displayed in the navigation. This is a CharField instance with max length 50.

order = None
The order in which the NavigationItem will be displayed.

is_active(request)
Returns True if the NavigationItem is considered active for a given request and False otherwise.

has_active_descendants(request)
Returns True if the NavigationItem has active descendants and False otherwise.

class philo.contrib.shipherd.models.NavigationManager

Template tags

templatetag shipherd.recursenavigation
The recursenavigation templatetag takes two arguments:

•the Node for which the Navigation should be found

•the Navigation‘s key.

It will then recursively loop over each NavigationItem in the Navigation and render the template chunk
within the block. recursenavigation sets the following variables in the context:

Variable Description
navloop.depth The current depth of the loop (1 is the top level)
navloop.depth0 The current depth of the loop (0 is the top level)
navloop.counter The current iteration of the current level(1-indexed)
navloop.counter0 The current iteration of the current level(0-indexed)
navloop.first True if this is the first time through the current level
navloop.last True if this is the last time through the current level
navloop.parentloop This is the loop one level “above” the current one
item The current item in the loop (a NavigationItem instance)
children If accessed, performs the next level of recursion.
navloop.active True if the item is active for this request
navloop.active_descendants True if the item has active descendants for this request

Example:

{% recursenavigation node "main" %}

<li{% if navloop.active %} class=’active’{% endif %}>
{{ item.text }}
{% if item.get_children %}

{{ children }}

{% endif %}

{% endrecursenavigation %}

26 Chapter 1. Contents

Philo Documentation, Release 0.9.2

Note: {% recursenavigation %} requires that the current HttpRequest be present in the
context as request. The simplest way to do this is with the request context processor.
Simply make sure that django.core.context_processors.request is included in your
TEMPLATE_CONTEXT_PROCESSORS setting.

templatefilter shipherd.has_navigation(node, key=None)
Returns True if the node has a Navigation with the given key and False otherwise. If key is None,
returns whether the node has any Navigations at all.

templatefilter shipherd.navigation_host(node, key)
Returns the Node which hosts the Navigation which node has inherited for key. Returns node if any
exceptions are encountered.

1.12.3 Sobol

Sobol implements a generic search interface, which can be used to search databases or websites. No assumptions are
made about the search method. If SOBOL_USE_CACHE is True (default), the results will be cached using django’s
cache framework. Be aware that this may use a large number of cache entries, as a unique entry will be made for each
search string for each type of search.

Settings

SOBOL_USE_CACHE Whether sobol will use django’s cache framework. Defaults to True; this may cause a lot of
entries in the cache.

SOBOL_USE_EVENTLET If eventlet is installed and this setting is True, sobol web searches will use
eventlet.green.urllib2 instead of the built-in urllib2 module. Default: False.

Templates

For convenience, sobol provides a template at sobol/search/_list.html which can be used with an {%
include %} tag inside a full search page template to list the search results. The _list.html template also uses a
basic jQuery script (static/sobol/ajax_search.js) to handle AJAX search result loading if the AJAX API
of the current SearchView is enabled. If you want to use _list.html, but want to provide your own version of
jQuery or your own AJAX loading script, or if you want to include the basic script somewhere else (like inside the
<head>) simply do the following:

{% include "sobol/search/_list.html" with suppress_scripts=1 %}

Models

class philo.contrib.sobol.models.Search(*args, **kwargs)
Represents all attempts to search for a unique string.

string = None
The string which was searched for.

get_weighted_results(threshhold=None)
Returns a list of ResultURL instances related to the search and ordered by decreasing weight. This will
be cached on the instance.

1.12. Contrib apps 27

https://docs.djangoproject.com/en/dev/ref/templates/api/#django-core-context-processors-request

Philo Documentation, Release 0.9.2

Parameters threshhold – The earliest datetime that a Click can have been made on a related
ResultURL in order to be included in the weighted results (or None to include all Clicks
and ResultURLs).

get_favored_results(error=5, threshhold=None)
Calculates the set of most-favored results based on their weight. Evenly-weighted results will be grouped
together and either added or excluded as a group.

Parameters

• error – An arbitrary number; higher values will cause this method to be more reticent
about adding new items to the favored results.

• threshhold – Will be passed directly into get_weighted_results()

class philo.contrib.sobol.models.ResultURL(*args, **kwargs)
Represents a URL which has been selected one or more times for a Search.

search
A ForeignKey to the Search which the ResultURL is related to.

url = None
The URL which was selected.

get_weight(threshhold=None)
Calculates, caches, and returns the weight of the ResultURL.

Parameters threshhold – The datetime limit before which Clicks will not contribute to the
weight of the ResultURL.

weight
Calculates, caches, and returns the weight of the ResultURL.

Parameters threshhold – The datetime limit before which Clicks will not contribute to the
weight of the ResultURL.

class philo.contrib.sobol.models.Click(*args, **kwargs)
Represents a click on a ResultURL.

result
A ForeignKey to the ResultURL which the Click is related to.

datetime = None
The datetime when the click was registered in the system.

get_weight(default=1, weighted=<function <lambda> at 0x2be1668>)
Calculates and returns the weight of the Click.

weight
Calculates and returns the weight of the Click.

class philo.contrib.sobol.models.SearchView(*args, **kwargs)
Handles a view for the results of a search, anonymously tracks the selections made by end users, and provides
an AJAX API for asynchronous search result loading. This can be particularly useful if some searches are slow.

results_page
ForeignKey to a Page which will be used to render the search results.

searches = 5
A SlugMultipleChoiceField whose choices are the contents of sobol.search.registry

enable_ajax_api = None
A BooleanField which controls whether or not the AJAX API is enabled.

28 Chapter 1. Contents

Philo Documentation, Release 0.9.2

Note: If the AJAX API is enabled, a ajax_api_url attribute will be added to each search instance
containing the url and get parameters for an AJAX request to retrieve results for that search.

Note: Be careful not to access search_instance.results if the AJAX API is enabled - otherwise
the search will be run immediately rather than on the AJAX request.

placeholder_text = None
A CharField containing the placeholder text which is intended to be used for the search box for the
SearchView. It is the template author’s responsibility to make use of this information.

search_form
The form which will be used to validate the input to the search box for this SearchView.

alias of SearchForm

results_view(request, extra_context=None)
Renders results_page with a context containing an instance of search_form. If the form was
submitted and was valid, then one of two things has happened:

•A search has been initiated. In this case, a list of search instances will be added to the context
as searches. If enable_ajax_api is enabled, each instance will have an ajax_api_url
attribute containing the url needed to make an AJAX request for the search results.

•A link has been chosen. In this case, corresponding Search, ResultURL, and Click instances
will be created and the user will be redirected to the link’s actual url.

ajax_api_view(request, slug, extra_context=None)
Returns a JSON object containing the following variables:

search Contains the slug for the search.

results Contains the results of Result.get_context() for each result.

rendered Contains the results of Result.render() for each result.

hasMoreResults True or False whether the search has more results according to
BaseSearch.has_more_results()

moreResultsURL Contains None or a querystring which, once accessed, will note the Click and redi-
rect the user to a page containing more results.

Search API

philo.contrib.sobol.search.registry = <philo.utils.registry.Registry object at 0x28b23d0>
A registry for BaseSearch subclasses that should be available in the admin.

philo.contrib.sobol.search.get_search_instance(slug, search_arg)
Returns a search instance for the given slug, either from the cache or newly-instantiated.

class philo.contrib.sobol.search.Result(search, result)
Result is a helper class that, given a search and a result of that search, is able to correctly render itself with a
template defined by the search. Every Result will pass a title, a url (if applicable), and the raw result
returned by the search into the template context when rendering.

Parameters

• search – An instance of a BaseSearch subclass or an object that implements the same
API.

1.12. Contrib apps 29

Philo Documentation, Release 0.9.2

• result – An arbitrary result from the search.

get_title()
Returns the title of the result by calling BaseSearch.get_result_title() on the raw result.

get_url()
Returns the url of the result or None by calling BaseSearch.get_result_url() on the raw result.
This url will contain a querystring which, if used, will track a Click for the actual url.

get_actual_url()
Returns the actual url of the result by calling BaseSearch.get_actual_result_url() on the
raw result.

get_content()
Returns the content of the result by calling BaseSearch.get_result_content() on the raw re-
sult.

get_template()
Returns the template which will be used to render the Result by calling
BaseSearch.get_result_template() on the raw result.

get_context()
Returns the context dictionary for the result. This is used both in rendering the result and in the AJAX
return value for SearchView.ajax_api_view(). The context will contain the following keys:

title The result of calling get_title()

url The result of calling get_url()

content The result of calling get_content()

render()
Returns the template from get_template() rendered with the context from get_context().

class philo.contrib.sobol.search.BaseSearch(search_arg)
Defines a generic search api. Accessing results will attempt to retrieve cached results and, if that fails, will
initiate a new search and store the results in the cache. Each search has a verbose_name and a slug. If
these are not provided as attributes, they will be automatically generated based on the name of the class.

Parameters search_arg – The string which is being searched for.

result_limit = 5
The number of results to return from the complete list. Default: 5

result_template = None
The path to the template which will be used to render the Results for this search. If
this is None, then the framework will try sobol/search/<slug>/result.html and
sobol/search/result.html.

title_template = None
The path to the template which will be used to generate the title of the Results for this
search. If this is None, then the framework will try sobol/search/<slug>/title.html and
sobol/search/title.html.

content_template = None
The path to the template which will be used to generate the content of the Results for this
search. If this is None, then the framework will try sobol/search/<slug>/content.html and
sobol/search/content.html.

results
Retrieves cached results or initiates a new search via get_results() and caches the results.

30 Chapter 1. Contents

Philo Documentation, Release 0.9.2

get_results(limit=None, result_class=<class ‘philo.contrib.sobol.search.Result’>)
Calls search() and parses the return value into Result instances.

Parameters

• limit – Passed directly to search().

• result_class – The class used to represent the results. This will be instantiated with the
BaseSearch instance and the raw result from the search.

search(limit=None)
Returns an iterable of up to limit results. The get_result_title(), get_result_url(),
get_result_template(), and get_result_extra_context() methods will be used to in-
terpret the individual items that this function returns, so the result can be an object with attributes as easily
as a dictionary with keys. However, keep in mind that the raw results will be stored with django’s caching
mechanisms and will be converted to JSON.

get_actual_result_url(result)
Returns the actual URL for the result or None if there is no URL. Must be implemented by subclasses.

get_result_querydict(result)
Returns a querydict for tracking selection of the result, or None if there is no URL for the result.

get_result_url(result)
Returns None or a url which, when accessed, will register a Click for that url.

get_result_title(result)
Returns the title of the result. By default, renders sobol/search/<slug>/title.html or
sobol/search/title.html with the result in the context. This can be overridden by setting
title_template or simply overriding get_result_title(). If no template can be found, this
will raise TemplateDoesNotExist.

get_result_content(result)
Returns the content for the result. By default, renders sobol/search/<slug>/content.html
or sobol/search/content.html with the result in the context. This can be overridden by setting
content_template or simply overriding get_result_content(). If no template is found, this
will return an empty string.

get_result_template(result)
Returns the template to be used for rendering the result. For a search with slug google, this would first
try sobol/search/google/result.html, then fall back on sobol/search/result.html.
Subclasses can override this by setting result_template to the path of another template.

has_more_results
Returns True if there are more results than result_limit and False otherwise.

get_actual_more_results_url()
Returns the actual url for more results. By default, simply returns None.

get_more_results_querydict()
Returns a QueryDict for tracking whether people click on a ‘more results’ link.

more_results_url
Returns a URL which consists of a querystring which, when accessed, will log a Click for the actual
URL.

class philo.contrib.sobol.search.DatabaseSearch(search_arg)
Implements search() and get_queryset() methods to handle database queries.

model = None
The model which should be searched by the DatabaseSearch.

1.12. Contrib apps 31

Philo Documentation, Release 0.9.2

get_queryset()
Returns a QuerySet of all instances of model. This method should be overridden by subclasses to
specify how the search should actually be implemented for the model.

class philo.contrib.sobol.search.URLSearch(search_arg)
Defines a generic interface for searches that require accessing a certain url to get search results.

search_url = ‘’
The base URL which will be accessed to get the search results.

query_format_str = ‘%s’
The url-encoded query string to be used for fetching search results from search_url. Must have one
%s to contain the search argument.

url
The URL where the search gets its results. Composed from search_url and query_format_str.

parse_response(response, limit=None)
Handles the response from accessing url (with urllib2.urlopen()) and returns a list of up to
limit results.

class philo.contrib.sobol.search.JSONSearch(search_arg)
Makes a GET request and parses the results as JSON. The default behavior assumes that the response contains
a list of results.

class philo.contrib.sobol.search.GoogleSearch(search_arg)
An example implementation of a JSONSearch.

default_args
Unquoted default arguments for the GoogleSearch.

1.12.4 Waldo

Models

Waldo provides abstract MultiViews to handle several levels of common authentication:

• LoginMultiView handles the case where users only need to be able to log in and out.

• PasswordMultiView handles the case where users will also need to change their password.

• RegistrationMultiView builds on top of PasswordMultiView to handle user registration, as well.

• AccountMultiView adds account-handling functionality to the RegistrationMultiView.

class philo.contrib.waldo.models.LoginMultiView(*args, **kwargs)
Handles exclusively methods and views related to logging users in and out.

login_page
A ForeignKey to the Page which will be used to render the login form.

login_form
A django form class which will be used for the authentication process. Default:
WaldoAuthenticationForm.

alias of WaldoAuthenticationForm

set_requirement_redirect(request, redirect=None)
Figures out and stores where a user should end up after landing on a page (like the login page) because
they have not fulfilled some kind of requirement.

32 Chapter 1. Contents

Philo Documentation, Release 0.9.2

get_requirement_redirect(request, default=None)
Returns the location which a user should be redirected to after fulfilling a requirement (like logging in).

login(request, *args, **kwargs)
Renders the login_page with an instance of the login_form for the given HttpRequest.

logout(request, *args, **kwargs)
Logs the given HttpRequest out, redirecting the user to the page they just left or to the
get_absolute_url() for the request.node.

login_required(view)
Wraps a view function to require that the user be logged in.

class philo.contrib.waldo.models.PasswordMultiView(*args, **kwargs)
Adds support for password setting, resetting, and changing to the LoginMultiView. Password reset support
includes handling of a confirmation email.

password_reset_page
A ForeignKey to the Page which will be used to render the password reset request form.

password_reset_confirmation_email
A ForeignKey to the Page which will be used to render the password reset confirmation email.

password_set_page
A ForeignKey to the Page which will be used to render the password setting form (i.e. the page that
users will see after confirming a password reset).

password_change_page
A ForeignKey to the Page which will be used to render the password change form.

password_change_form
The password change form class. Default: django.contrib.auth.forms.PasswordChangeForm.

alias of PasswordChangeForm

password_set_form
The password set form class. Default: django.contrib.auth.forms.SetPasswordForm.

alias of SetPasswordForm

password_reset_form
The password reset request form class. Default: django.contrib.auth.forms.PasswordResetForm.

alias of PasswordResetForm

make_confirmation_link(confirmation_view, token_generator, user, node, token_args=None, re-
verse_kwargs=None, secure=False)

Generates a confirmation link for an arbitrary action, such as a password reset.

Parameters

• confirmation_view – The view function which needs to be linked to.

• token_generator – Generates a confirmable token for the action.

• user – The user who is trying to take the action.

• node – The node which is providing the basis for the confirmation URL.

• token_args – A list of additional arguments (i.e. besides the user) to be used for token
creation.

• reverse_kwargs – A dictionary of any additional keyword arguments necessary for cor-
rectly reversing the view.

• secure – Whether the link should use the https:// or http://.

1.12. Contrib apps 33

https://
http://

Philo Documentation, Release 0.9.2

send_confirmation_email(subject, email, page, extra_context)
Sends a confirmation email for an arbitrary action, such as a password reset. If the page‘s Template
has a mimetype of text/html, then the email will be sent with an HTML alternative version.

Parameters

• subject – The subject line of the email.

• email – The recipient’s address.

• page – The page which will be used to render the email body.

• extra_context – The context for rendering the page.

password_reset(request, extra_context=None, token_generator=<django.contrib.auth.tokens.PasswordResetTokenGenerator
object at 0x29e8950>)

Handles the process by which users request a password reset, and generates the context for the confirmation
email. That context will contain:

link The confirmation link for the password reset.

user The user requesting the reset.

site The current Site.

request The current HttpRequest instance.

Parameters token_generator – The token generator to use for the confirmation link.

password_reset_confirm(request, extra_context=None, uidb36=None, token=None, to-
ken_generator=<django.contrib.auth.tokens.PasswordResetTokenGenerator
object at 0x29e8950>)

Checks that token‘ is valid, and if so, renders an instance of password_set_form with
password_set_page.

Parameters token_generator – The token generator used to check the token.

password_change(request, extra_context=None)
Renders an instance of password_change_form with password_change_page.

class philo.contrib.waldo.models.RegistrationMultiView(*args, **kwargs)
Adds support for user registration to the PasswordMultiView.

register_page
A ForeignKey to the Page which will be used to display the registration form.

register_confirmation_email
A ForeignKey to the Page which will be used to render the registration confirmation email.

registration_form
The registration form class. Default: RegistrationForm.

alias of RegistrationForm

register(request, extra_context=None, token_generator=<philo.contrib.waldo.tokens.RegistrationTokenGenerator
object at 0x39d5bd0>)

Renders the register_page with an instance of registration_form in the context as form. If
the form has been submitted, sends a confirmation email using register_confirmation_email
and the same context as PasswordMultiView.password_reset().

Parameters token_generator – The token generator to use for the confirmation link.

34 Chapter 1. Contents

Philo Documentation, Release 0.9.2

register_confirm(request, extra_context=None, uidb36=None, token=None, to-
ken_generator=<philo.contrib.waldo.tokens.RegistrationTokenGenerator
object at 0x39d5bd0>)

Checks that token is valid, and if so, logs the user in and redirects them to
post_register_confirm_redirect().

Parameters token_generator – The token generator used to check the token.

post_register_confirm_redirect(request)
Returns an HttpResponseRedirect for post-registration-confirmation. Default:
Node.get_absolute_url() for request.node.

class philo.contrib.waldo.models.AccountMultiView(*args, **kwargs)
Adds support for user accounts on top of the RegistrationMultiView. By default, the account consists
of the first_name, last_name, and email fields of the User model. Using a different account model is as simple
as replacing account_form with any form class that takes an auth.User instance as the first argument.

manage_account_page
A ForeignKey to the Page which will be used to render the account management form.

email_change_confirmation_email
A ForeignKey to a Page which will be used to render an email change confirmation email. This is
optional; if it is left blank, then email changes will be performed without confirmation.

account_form
A django form class which will be used to manage the user’s account. Default: UserAccountForm

alias of UserAccountForm

account_view(request, extra_context=None, token_generator=<philo.contrib.waldo.tokens.EmailTokenGenerator
object at 0x42d37d0>, *args, **kwargs)

Renders the manage_account_page with an instance of account_form in the
context as form. If the form has been posted, the user’s email was changed, and
email_change_confirmation_email is not None, sends a confirmation email to the new
email to make sure it exists before making the change. The email will have the same context as
PasswordMultiView.password_reset().

Parameters token_generator – The token generator to use for the confirmation link.

has_valid_account(user)
Returns True if the user has a valid account and False otherwise.

account_required(view)
Wraps a view function to allow access only to users with valid accounts and otherwise redirect them to the
account_view().

post_register_confirm_redirect(request)
Automatically redirects users to the account_view() after registration.

email_change_confirm(request, extra_context=None, uidb36=None, token=None, email=None,
token_generator=<philo.contrib.waldo.tokens.EmailTokenGenerator ob-
ject at 0x42d37d0>)

Checks that token is valid, and if so, changes the user’s email.

Parameters token_generator – The token generator used to check the token.

Forms

class philo.contrib.waldo.forms.EmailInput(attrs=None)
Displays an HTML5 email input on browsers which support it and a normal text input on other browsers.

1.12. Contrib apps 35

Philo Documentation, Release 0.9.2

class philo.contrib.waldo.forms.RegistrationForm(data=None, files=None,
auto_id=’id_%s’, prefix=None,
initial=None, error_class=<class
‘django.forms.util.ErrorList’>, la-
bel_suffix=’:’, empty_permitted=False,
instance=None)

Handles user registration. If recaptcha_django is installed on the sys-
tem and recaptcha_django.middleware.ReCaptchaMiddleware is in
settings.MIDDLEWARE_CLASSES, then a recaptcha field will automatically be added to the regis-
tration form.

See Also:

recaptcha-django

email = None
An EmailField using the EmailInput widget.

class philo.contrib.waldo.forms.UserAccountForm(user, *args, **kwargs)
Handles a user’s account - by default, auth.User.first_name, auth.User.last_name,
auth.User.email.

email_changed()
Returns True if the email field changed value and False if it did not, or if there is no email field on the
form. This method must be supplied by account forms used with waldo.

reset_email()
ModelForms modify their instances in-place during _post_clean(); this method resets the email value
to its initial state and returns the altered value. This is a method on the form to allow unusual behavior
such as storing email on a UserProfile.

classmethod set_email(user, email)
Given a valid instance and an email address, correctly set the email address for that instance and save
the changes. This is a class method in order to allow unusual behavior such as storing email on a
UserProfile.

class philo.contrib.waldo.forms.WaldoAuthenticationForm(request=None, *args,
**kwargs)

Handles user authentication. Checks that the user has not mistakenly entered their email address (like
django.contrib.admin.forms.AdminAuthenticationForm) but does not require that the user
be staff.

Token generators

Based on django.contrib.auth.tokens. Supports the following settings:

WALDO_REGISTRATION_TIMEOUT_DAYS The number of days a registration link will be valid before expiring.
Default: 1.

WALDO_EMAIL_TIMEOUT_DAYS The number of days an email change link will be valid before expiring. Default:
1.

philo.contrib.waldo.tokens.registration_token_generator = <philo.contrib.waldo.tokens.RegistrationTokenGenerator object at 0x39d5bd0>
Strategy object used to generate and check tokens for the user registration mechanism.

philo.contrib.waldo.tokens.email_token_generator = <philo.contrib.waldo.tokens.EmailTokenGenerator object at 0x42d37d0>
Strategy object used to generate and check tokens for a user email change mechanism.

36 Chapter 1. Contents

http://code.google.com/p/recaptcha-django/

Philo Documentation, Release 0.9.2

1.12.5 Winer

Winer provides the same API as django’s syndication Feed class, adapted to a Philo-style MultiView for easy
database management. Apps that need syndication can simply subclass FeedView, override a few methods, and start
serving RSS and Atom feeds. See BlogView for a concrete implementation example.

class philo.contrib.winer.models.FeedView(*args, **kwargs)
FeedView is an abstract model which handles a number of pages and related feeds for a single object such as
a blog or newsletter. In addition to all other methods and attributes, FeedView supports the same generic API
as django.contrib.syndication.views.Feed.

feed_type = None
The type of feed which should be served by the FeedView.

feed_suffix = None
The suffix which will be appended to a page URL for a feed_type feed of its items. Default: “feed”.
Note that RSS and Atom feeds will always be available at <page_url>/rss and <page_url>/atom
regardless of the value of this setting.

See Also:

get_feed_type(), feed_patterns()

feeds_enabled = None
A BooleanField - whether or not feeds are enabled.

feed_length = None
A PositiveIntegerField - the maximum number of items to return for this feed. All items will be
returned if this field is blank. Default: 15.

item_title_template
A ForeignKey to a Templatewhich will be used to render the title of each item in the feed if provided.

item_description_template
A ForeignKey to a Template which will be used to render the description of each item in the feed if
provided.

item_context_var = ‘items’
An attribute holding the name of the context variable to be populated with the items managed by the
FeedView. Default: “items”

object_attr = ‘object’
An attribute holding the name of the attribute on a subclass of FeedView which will contain the main
object of a feed (such as a Blog.) Default: “object”

Example:

class BlogView(FeedView):
blog = models.ForeignKey(Blog)

object_attr = ’blog’
item_context_var = ’entries’

description = ‘’
An attribute holding a description of the feeds served by the FeedView. This is a required part of the
django.contrib.syndication.view.Feed API.

feed_patterns(base, get_items_attr, page_attr, reverse_name)
Given the name to be used to reverse this view and the names of the attributes for the function that fetches
the objects, returns patterns suitable for inclusion in urlpatterns. In addition to base (which will serve the

1.12. Contrib apps 37

http://docs.djangoproject.com/en/dev/ref/contrib/syndication/#django.contrib.syndication.django.contrib.syndication.views.Feed
http://docs.djangoproject.com/en/dev/ref/contrib/syndication/#django.contrib.syndication.django.contrib.syndication.views.Feed

Philo Documentation, Release 0.9.2

page at page_attr) and base + feed_suffix (which will serve a feed_type feed), patterns will
be provided for each registered feed type as base + slug.

Parameters

• base – The base of the returned patterns - that is, the subpath pattern which will reference
the page for the items. The feed_suffix will be appended to this subpath.

• get_items_attr – A callable or the name of a callable on the FeedView which will return
an (items, extra_context) tuple. This will be passed directly to feed_view()
and page_view().

• page_attr – A Page instance or the name of an attribute on the FeedView which con-
tains a Page instance. This will be passed directly to page_view() and will be ren-
dered with the items from get_items_attr.

• reverse_name – The string which is considered the “name” of the view function returned
by page_view() for the given parameters.

Returns Patterns suitable for use in urlpatterns.

Example:

class BlogView(FeedView):
blog = models.ForeignKey(Blog)
entry_archive_page = models.ForeignKey(Page)

@property
def urlpatterns(self):

urlpatterns = self.feed_patterns(r’^’, ’get_all_entries’, ’index_page’, ’index’)
urlpatterns += self.feed_patterns(r’^(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d{2})’, ’get_entries_by_ymd’, ’entry_archive_page’, ’entries_by_day’)
return urlpatterns

def get_entries_by_ymd(request, year, month, day, extra_context=None):
entries = Blog.entries.all()
filter entries based on the year, month, and day.
return entries, extra_context

See Also:

get_feed_type()

get_object(request, **kwargs)
By default, returns the object stored in the attribute named by object_attr. This can be over-
ridden for subclasses that publish different data for different URL parameters. It is part of the
django.contrib.syndication.views.Feed API.

feed_view(get_items_attr, reverse_name, feed_type=None)
Returns a view function that renders a list of items as a feed.

Parameters

• get_items_attr – A callable or the name of a callable on the FeedView that will return a
(items, extra_context) tuple when called with the object for the feed and view arguments.

• reverse_name – The name which can be used reverse the page for this feed using the
FeedView as the urlconf.

• feed_type – The slug used to render the feed class which will be used by the returned view
function.

Returns A view function that renders a list of items as a feed.

page_view(get_items_attr, page_attr)

38 Chapter 1. Contents

Philo Documentation, Release 0.9.2

Parameters

• get_items_attr – A callable or the name of a callable on the FeedView that will return a
(items, extra_context) tuple when called with view arguments.

• page_attr – A Page instance or the name of an attribute on the FeedView which con-
tains a Page instance. This will be rendered with the items from get_items_attr.

Returns A view function that renders a list of items as an HttpResponse.

process_page_items(request, items)
Hook for handling any extra processing of items based on an HttpRequest, such as pagination or
searching. This method is expected to return a list of items and a dictionary to be added to the page
context.

get_feed_type(request, feed_type=None)
If feed_type is not None, returns the corresponding class from the registry or raises
HttpNotAcceptable.

Otherwise, intelligently chooses a feed type for a given request. Tries to return feed_type, but if the
Accept header does not include that mimetype, tries to return the best match from the feed types that are
offered by the FeedView. If none of the offered feed types are accepted by the HttpRequest, raises
HttpNotAcceptable.

If mimeparse is installed, it will be used to select the best matching accepted format; otherwise, the first
available format that is accepted will be selected.

get_feed(obj, request, reverse_name, feed_type=None, *args, **kwargs)
Returns an unpopulated django.utils.feedgenerator.DefaultFeed object for this object.

Parameters

• obj – The object for which the feed should be generated.

• request – The current request.

• reverse_name – The name which can be used to reverse the URL of the page correspond-
ing to this feed.

• feed_type – The slug used to register the feed class that will be instantiated and returned.

Returns An instance of the feed class registered as feed_type, falling back to feed_type
if feed_type is None.

populate_feed(feed, items, request)
Populates a django.utils.feedgenerator.DefaultFeed instance as is returned by
get_feed() with the passed-in items.

feed_extra_kwargs(obj)
Returns an extra keyword arguments dictionary that is used when initializing the feed generator.

item_extra_kwargs(item)
Returns an extra keyword arguments dictionary that is used with the add_item call of the feed generator.

exception philo.contrib.winer.exceptions.HttpNotAcceptable
This will be raised in FeedView.get_feed_type() if an Http-Accept header will not accept any of the
feed content types that are available.

class philo.contrib.winer.middleware.HttpNotAcceptableMiddleware
Middleware to catch HttpNotAcceptable and return an HttpResponse with a 406 response code. See
RFC 2616.

Following Python and Django’s “batteries included” philosophy, Philo includes a number of optional packages that
simplify common website structures:

1.12. Contrib apps 39

http://code.google.com/p/mimeparse/
http://tools.ietf.org/html/rfc2616.html

Philo Documentation, Release 0.9.2

• penfield — Basic blog and newsletter management.

• shipherd — Powerful site navigation.

• sobol — Custom web and database searches.

• waldo — Custom authentication systems.

• winer — Abstract framework for Philo-based syndication.

1.13 Contributing to Philo

So you want to contribute to Philo? That’s great! Here’s some ways you can get started:

• Report bugs and request features using the issue tracker at the project site.

• Contribute code using git. You can fork philo’s repository on GitHub, Gitorious, or Bitbucket. If you are
contributing to Philo, you will need to submit a Contributor License Agreement.

• Join the discussion on IRC at irc://irc.oftc.net/#philo if you have any questions or suggestions or just want
to chat about the project. You can also keep in touch using the project mailing lists: philo@ithinksw.org and
philo-devel@ithinksw.org.

1.13.1 Branches and Code Style

We use A successful Git branching model with the blessed repository. To make things easier, you probably should too.
This means that you should work on and against the develop branch in most cases, and leave it to the release manager
to create the commits on the master branch if and when necessary. When pulling changes into the blessed repository
at your request, the release manager will usually merge them into the develop branch unless you explicitly note they
be treated otherwise.

Philo adheres to PEP8 for its code style, with two exceptions: tabs are used rather than spaces, and lines are not
truncated at 79 characters.

1.13.2 Licensing and Legal

In order for the release manager to merge your changes into the blessed repository, you will need to have already
submitted a signed CLA. Our CLAs are based on the Apache Software Foundation’s CLAs, which is the same source
as the Django Project’s CLAs. You might, therefore, find the Django Project’s CLA FAQ. helpful.

If you are an individual not doing work for an employer, then you can simply submit the Individual CLA.

If you are doing work for an employer, they will need to submit the Corporate CLA and you will need to submit
the Individual CLA Individual CLA as well.

Both documents include information on how to submit them.

40 Chapter 1. Contents

http://project.philocms.org/
http://git-scm.com/
http://github.com/ithinksw/philo/
http://gitorious.org/ithinksw/philo/
http://bitbucket.org/ithinksw/philo/
mailto:philo@ithinksw.org
mailto:philo-devel@ithinksw.org
http://nvie.com/posts/a-successful-git-branching-model/
https://www.djangoproject.com/foundation/cla/
https://www.djangoproject.com/foundation/cla/faq/

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

41

Philo Documentation, Release 0.9.2

42 Chapter 2. Indices and tables

PYTHON MODULE INDEX

p
philo, ??
philo.contrib, ??
philo.contrib.penfield, ??
philo.contrib.penfield.templatetags.penfield,

??
philo.contrib.shipherd, ??
philo.contrib.shipherd.models, ??
philo.contrib.shipherd.templatetags.shipherd,

??
philo.contrib.sobol, ??
philo.contrib.sobol.models, ??
philo.contrib.sobol.search, ??
philo.contrib.waldo, ??
philo.contrib.waldo.forms, ??
philo.contrib.waldo.models, ??
philo.contrib.waldo.tokens, ??
philo.contrib.winer, ??
philo.contrib.winer.exceptions, ??
philo.contrib.winer.middleware, ??
philo.contrib.winer.models, ??
philo.exceptions, ??
philo.forms.entities, ??
philo.forms.fields, ??
philo.loaders.database, ??
philo.middleware, ??
philo.models, ??
philo.models.base, ??
philo.models.collections, ??
philo.models.fields, ??
philo.models.fields.entities, ??
philo.models.nodes, ??
philo.models.pages, ??
philo.signals, ??
philo.templatetags, ??
philo.templatetags.collections, ??
philo.templatetags.containers, ??
philo.templatetags.embed, ??
philo.templatetags.include_string, ??
philo.templatetags.nodes, ??
philo.utils, ??

philo.utils.entities, ??
philo.validators, ??
philo.views, ??

43

